GPRE Documentation
Release 1.0

Jappe Franke, Allard de Wit, Wouter Meijninger

Sep 04, 2023

CONTENTS

1 Reference guide 3
1.1 GPREoOVErview e e e e e 3
1.2 Datasources v v v i i e e e e e e e e e e e e 5
1.3 Service COMPONENLS v v v v it et e e e e e e e e e e e e e e e e e e 7
1.4 GPRE system and installation e e e e e e 14
1.5 GPREdatabase e e e e e 26
2 Code documentation 35
2.1 GPREcodedocumentation. e e e e e e e e e 35
3 Indices and tables 37

GPRE Documentation, Release 1.0

The Golden Paddy Recommendation Engine (GPRE) has been developed as part of Smart Agriculture Myanmar project
(SAM) which is funded by G4AW facility of the Dutch ministry of foreign affairs.

GPRE uses information on weather, location, crop type and sowing date for providing effective, time- and
location- and crop stage specific advisory services to smallholder farmers in Myanmar. It is aimed at
improving agricultural productivity and farmer income and at improving the management of weather related
emergencies. Currently GPRE provides several services for Myanmar:

* Weather related services aimed at understanding current and forecasted weather conditions.
* Disease related services (rice only) for understanding impact of disease pressure on rice cultivation
* Prediction of crop stages based on location, weather and sowing date.

The Golden Paddy Recommendation Engine has been developed by Wageningen Environmental Research (WENR)
together with with ImpactTerra. Embedding of results and visualization in an interface has been implemented by
Satelligence.

G4aAl

' GEODATA FOR AGRICULTURE AND WATER

CONTENTS 1

https://g4aw.spaceoffice.nl/files/files/G4AW/project%20leaflets/A4%20leaflet%20SAM%20July%202018%20L.pdf
https://g4aw.spaceoffice.nl/nl/

GPRE Documentation, Release 1.0

2 CONTENTS

CHAPTER
ONE

REFERENCE GUIDE

1.1 GPRE overview

1.1.1 Service components

The overall goal of the Golden Paddy Recommendation Engine (GPRE) is to support farmers and analysts in
understanding the the impact of weather conditions on crop development, disease and extreme weather. GPRE
provides several agronomic services for this purpose:

¢ Weather related services

— maps of forecasted weather variables for all regions in Myanmar based on the forecast from Dark-
Sky (7 days ahead)

— charts of weather variables for all regions in Myanmar. Charts include the data from the current
year, previous year, the climatology and the weather forecast.

* Disease related services (rice only):

— Maps of susceptibility for 5 common rice diseases plus an indicator showing current conditions
compared to the climatology (alerts)

— Charts of susceptibility for 5 common rice diseases including the current year, forecast and the
climatology.

* Prediction of crop stages:

— Phenological stages are predicted according to the BBCH scale for four crops and several varieties
(maize, sugar cane, mungbean and rice) based on location, weather and sowing date. If crop
management messages are provided for the given crop and variety, the system can also provide the
dates on which those messages could be sent to the farmer given the relevant crop stage.

This documentation provides an overview of the current implementation of GPRE including the data sources used, mod-
elling approach for phenology and disease and technical information related to deployment, debugging and extending
GPRE with new crops.

GPRE Documentation, Release 1.0

1.1.2 Technical components

The main components of GPRE are:

¢ Modules written in python, which provide

Data providers for weather data (DarkSky forecast as well as historical weather data and the climatology)

Data providers for crop related data.

Visualization of results in HTML charts.

HTTP API’s based on Flask that be called with parameters and return the results as JSON.

Execution of tasks (computing of cached results for the weather maps and disease maps).

* A MySQL database which contains:

Crop and variety specific characteristics/parameters required for the crop model

Messages related to crop management.

Historical weather data and the corresponding climatology based on ERA-INTERIM
— Cached results for weather and disease maps

 Simulation models written in python which provide:
— Prediction of crop stages and related messages
— Prediction of disease susceptibility

The figure below provides a graphical overview of the main GPRE components.

4 Chapter 1. Reference guide

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim

GPRE Documentation, Release 1.0

Data providers

Data visualization
(weater, pheno, disease)

Flask HTTP API

1.2 Data sources

1.2.1 Weather

DarkSky API

GPRE uses the API provided by DarkSky to retrieve the weather forecast for the upcoming 7 days consisting of daily
weather variables. Most of the variables provided by the DarkSky API are not relevant for agronomic applications
(moonphase, windbearing, etc) therefore only a small subset of the variables is used:

¢ dewpointTemperature in degrees C;
* temperatureHigh in degrees C;

* temperatureLow in degrees C;

* windSpeed in m/sec;

* preciplntensity in mm/hour;

1.2. Data sources 5

GPRE Documentation, Release 1.0

Examples of the API call can be found in the table below. Extensive information is available from the documentation
for the DarkSky API

Next to a forecast API, DarkSky also provides a TimeMachine API which can be used to retrieve the weather variables
for a day in the past. During development of GPRE several problems were encountered with the TimeMachine API:

» Each TimeMachine call only provides the data for one day. This makes querying a time-series relatively expensive
and slow.

* For Myanmar the TimeMachine API provides weather data only for one year in the past which is insufficient for
model calibration and computation of the climatology.

Therefore GPRE does not rely on DarkSky for historical data but instead uses the ERA-INTERIM archive.

API type units example

Forecast API SI ForecastApi
TimeMachine API SI TimeMachineAPI 1
TimeMachine API + timezone

and ISO time string SI TimeMachine API2

Note that datetimes in the DarkSky JSON response are presented as UNIX time stamps in the local timezone. This can
be converted to timezone aware date/time in python using:

>>> import datetime as dt

>>> import pytz

>>> DarkSky_timestamp = 1592988827

>>> timezone = pytz.timezone('Asia/Yangon')

>>> tz_aware_datetime = dt.datetime.fromtimestamp(DarkSky_timestamp, timezone)

>>> print(tz_aware_datetime)

datetime.datetime (2020, 6, 24, 15, 23, 47, tzinfo=<DstTzInfo 'Asia/Yangon' +0630+6:30:00.
—STD>)

ECMWF ERA-INTERIM

ERA-INTERIM is a reanalysis of the global atmosphere since 1989, continuing in real time (Berrisford et al. 2009).
The ERA-INTERIM atmospheric model and reanalysis system has a spatial resolution of 0.7°x0.7° and 60 atmospheric
layers. Due to an improved reanalysis system, performance of ERA-INTERIM has improved compared to previous
reanalysis data sets such as ERA-40 (ECMWF 2007).

Currently ERA-INTERIM is superseded by the latest reanalysis “ERAS5” and its agriculturally enhanced version
AgERAS5. ERAS and AgERAS were not yet available at the start of development of GPRE, but hopefully the ERA-
INTERIM database currently used for GPRE can be replaced by AgERAS before the end of the project.

The ERA-INTERIM version used for GPRE has been downscaled to a 0.25x0.25 (~25km) degree grid and is available
in the GPRE database since 2000. Also the climatology used by GPRE is based upon the ERA-INTERIM archive.

6 Chapter 1. Reference guide

https://darksky.net/dev/docs
https://api.darksky.net/forecast/abea5442bd4f5671da76c765324df777/20.74,96.76/?exclude=currently,minutely,hourly&units=si
https://api.darksky.net/forecast/abea5442bd4f5671da76c765324df777/20.74,96.76,1466892000/?exclude=currently,minutely,hourly&units=si
https://api.darksky.net/forecast/abea5442bd4f5671da76c765324df777/20.74,96.76,2020-06-22T12:00:00+01:00/?exclude=currently,minutely,hourly&units=si
https://doi.org/10.24381/cds.6c68c9bb

GPRE Documentation, Release 1.0

Combining weather data sources

Combining time-series of weather variables from different data sources can sometimes be tricky due to systematic
differences between the data sources. Particularly for weather variables derived from weather models differences in
temperature may exist due to differences in the estimated elevation of the land surface at a given point. Also differences
in other variables can exist due to different model physics or boundary conditions.

Some differences can be corrected for, particularly temperature differences can often be corrected using so-called
“lapse-rate” corrections. However, this implies that the target elevation of both data source at that particular location
is known. However, DarkSky does not provide an elevation for its target location for both its forecast response and its
TimeMachine response. Therefore, such corrections are not possible using data from DarkSky.

When looking at graphs or maps that combine weather data from the archive and the forecast it is therefore useful to
bear in mind that systematic offsets may be present. This can be different for different location depending on how well
the datasets are consistent for that location

1.2.2 Phenology modelling

For setting up the phenological model two main sources of inputs are required:

* Information on the phenological response of the crop to temperature and possibly day length. These parameters
are assumed to be relatively invariant across varieties for a given crop type. Examples are the base and cutoff
temperatures for phenological development.

¢ Information on the duration of the different growth stages of a particular crop. This information is assumed to
be highly variable among varieties of a given crop.

For deriving these inputs different sources have been used. For the first category, the parameter values have been derived
from existing crop simulation models and literature review on phenological development. For example the parameter
files for the WOFOST crop simulation model provide information about the temperature response function of maize,
rice, mungbean and sugarcane.

For calibrating the duration of the phenological stages for different crops and varieties, field data has been collected
on the typical duration of crop varieties in Myanmar. Based on that information the duration of crop stages has been
calibrated interactively using a workflow implemented in Jupyter notebooks.

1.2.3 Disease modelling

The disease modelling is based on the disease environmental response functions for age, temperature and humidity
from the EpiRice model. Note that the disease modelling does not implement the entire EpiRice model, but only the
environmental response functions which are used to compute the susceptibility of the plant for the disease given the
conditions. Those environmental response functions are not described in the paper but can be obtained from the R
implementation of EpiRice.

1.3 Service Components

1.3.1 Weather Monitoring service

The purpose of the weather monitoring service is to provide insight into the current season weather and the weather
forecast for the coming week. Based on that information, an analyst can decide on actions that farmers need to take to
succesfully cultivate their fields. Such actions can be sowing, weeding, fertilizer application, irrigation, harvesting and
nearly any other crop management action that is determined by the weather conditions.

1.3. Service Components 7

https://doi.org/10.1016/j.cropro.2011.11.009
http://adamhsparks.github.io/epirice/
http://adamhsparks.github.io/epirice/

GPRE Documentation, Release 1.0

For many of such advisories on crop management it is often insufficient to only know the weather forecast. It is just as
important to know the conditions over the past weeks as well as an impression of how “normal” the current season is.
Therefore, the weather service combines data from three different sources:

* A weather forecast for the coming 7 days;
¢ The historical weather since the start of the current season;
* the long term average weather conditions (e.g. the ‘climatology’)

Based on this information charts can be generated for any location in Myanmar that put the current year weather
conditions and the weather forecast into a climatological perspective. Further, the weather monitoring service also
provides output for creating maps of the forecasted rainfall, temperature and wind for entire Myanmar as well as maps
showing these values relative to the climatology (the so-called z-score). The latter can be used for alerting analysts on
possible extreme conditions that could endanger the farmer and his/her crops.

Weather charts

An example of a weather chart for maximum temperature is provided below. It shows the current season weather as
the red line and the forecast for the coming 7 days as the red line with the circular markers. Further it also provides
the maximum temperature for the previous years for this location. Often weather can only be properly understood with
reference to the long term average and the extremes. Therefore the historical mean is also provide as the black line, the
mean +/- one standard deviation as the dark grey areas and the minimum and maximum values recorded in the past as
the light grey areas.

Using this approach it is easy to see that there was a strong drop in the maximum temperature at the end of april with
values that are lower than the minimum from the climatology. Fortunately, this drop in temperature is not as severe in
the minimum temperature and is still well with the normal range. Therefore damage to crops are not to be expected
from this event.

Example of a weather chart for maximum temperature.
Example of a weather chart for minimum temperature.

The chart for rainfall are slightly different from the charts for temperature and windspeed due to the chaotic nature of
rainfall and the skewed distribution. Therefore, the charts do not show the standard deviations as a background layer
but only the current year, the forecast, the historical mean and the minimum and maximum values in the climatology.

Example of a weather chart for rainfall.

Note: The weather charts have been implemented as HTML figures and therefore allow zooming and panning as well
as exporting to a PNG file for use in reports and presentations. Further, data points are shown when hovering above the
chart. For the figures on the temperature and wind these include the current year, the forecast, the previous year and
the long term average. The chart for rainfall will only show the the current year, the forecast and the long term average.
The hover labels for the current year and the forecast will also show the day-of-year next to the value itself.

8 Chapter 1. Reference guide

GPRE Documentation, Release 1.0

Weather maps

The GPRE services do not generate weather maps themselves but rather provide the data to generate those maps at the
regional level. The weather maps are based on the DarkSky forecast for the coming 7 days (daily values) which are
provided for each level 3 region in Myanmar as stored in the regions table in the MySQL database. Values are returned
based on the GID_3 code for which the first 5 regions are listed in the table below.

GID_3 NAME_3 TYPE_3 longitude latitude

MMR.1.1.1_1 Bassein West Village Township 94.635 16.904
MMR.1.1.2_1 Kyaunggon Village Township 95.119 17.101
MMR.1.1.3_1 Kyonpyaw Village Township 95.169 17.298
MMR.1.1.4_1 Ngaputaw Village Township 94.513 16.415
MMR.1.1.5_1 Thabaung Village Township 94.746 17.174

For each region a call to DarkSky is made based on the given longitude/latitude. The forecast retrieved from DarkSky
is processed in order to derive the indicators in the table below for each region.

Variable Explanation

name

rainfall Rainfall expected in mm

rain- Classification of rainfall into class labels: “No rainfall [0-1]”, “Light rainfall [1-5]”, “Medium rainfall
fall_class [5-10]”, “Heavy rainfall [10-25]", “Very heavy rainfall [25-50]", “Extreme rainfall [>50]"

mini- Daily minimum temperature in degrees C

mum_temg

mini- Minimum temperature scored according to the historical distribution: 0 means equal or lower then

mum_temp the minimum historically reported for this variable. 1 means equal or larger then the the maximum
historically reported for this variable. Values between 0 and 1 indicate a the position within the historical

distribution.
maxi- Daily maximum temperature in degrees C
mum_temg
maxi- See minimum temperature
mum_temg
wind- Daily mean windspeed in meter/sec.
speed
windgust Maximum daily windgust in meter/sec.
wind- Classification of wind gust into 5 classes: “Low wind”, “medium wind”, “strong wind gusts (some

gust_class difficulties)”, “Heavy wind gusts (caution)”, “Extreme wind gusts (dangerous)”
vapour_pre Daily mean vapour pressure

1.3.2 Crop stage prediction service

Phenology models predict time of events in an organism’s development. Development of many organisms which cannot
internally regulate their own temperature, is dependent on temperatures to which they are exposed in the environment.
Plants and invertebrates, including insects and nematodes, require a certain amount of heat to develop from one point
in their life-cycle to another, e.g., from eggs to adults. Because of yearly variations in weather, calendar dates are
not a good basis for making management decisions. Measuring the amount of heat accumulated over time provides a
physiological time scale that is biologically more accurate than calendar days.

The amount of heat needed by an organism to develop is known as physiological time. The amount of heat required to
complete a given organism’s development does not vary a lot— the combination of temperature (between thresholds)
and time will always be similar. Physiological time is often expressed in units called degree-days. For instance: if a

1.3. Service Components 9

GPRE Documentation, Release 1.0

species has a lower developmental threshold of 10° C, and the daily average temperature is at 13°C (or 3° above the
lower developmental threshold), 3 degree-day is accumulated.

Each stage of an organism’s development has its own total heat requirement. Development can be estimated by accu-
mulating degree-days between temperature thresholds throughout the season. The accumulation of degree-days from a
starting point can help predict when a developmental stage will be reached. Since many agro management actions that
farmers have to take are connected to phenological stages of crop, monitoring and predicting phenological development
through growing degree-days can support farmers when to take certain actions and helps planning such activities.

The GPRE crop stage prediction service uses a phenological model to simulate the crop development stages since
sowing. The applied model is:

* able to estimate the timing of different phenological stages (BBCH), such as emergence, vining and flowering,
and the duration of phenological phases, such as the grain filling phase.

* is based on the response of plant to surrounding temperature (air temperature), where each crop has a specific
temperature range represented by a minimum, maximum, and optimum.

BBCH

The BBCH-scale is used to identify the phenological development stages of plants'. BBCH-scales have been developed
for a range of crop species where similar growth stages of each plant are given the same code. The two figures below
show the BBCH phenology scale for wheat and potato. See wikipedia page on the BBCH-scale for a complete list of
crops and their corresponding phenology BBCH scale.

(see figures below).

Plant response

How a crop responds to the surrounding temperatures varies per crop. Temperature is the most important among all
factors that influence rate of plant development. For the GPRE crop stage prediction service we refer to temperature as
the daily average temperature. In general the response curve can be represented by minimum, maximum and optimum
temperatures. Where the minimum (or base) and maximum temperatures that define limits of development, and the
optimum temperature at which the development rate is maximal. All together these temperatures are also known as the
cardinal temperatures. The figure below shows different types of response curves.

When the temperature response function (TRF) is zero, development does not take place, which occurs when temper-
ature is below the minimum or above the maximum temperature. Development takes place at the maximum rate if the
response function is one, which occurs when temperature is between the optimal cardinal temperature. The relative
development rate is computed using linear interpolation along the temperature response function using the daily mean
temperature as its input value on the X axis.

The daily accumulation of growing degree-days (GDD) is thus computed as:
GDD = GDD oy - TRF (Tqvg)

where the maximum growing degree-days (GD D,) is computed as the optimum cardinal temperature (7,1) minus
the minimum or base temperature (7,1,

The development stage DV'S; of the crop at a given day ¢ can now be computed by accumulating GDD:

DVS, = DVS,_1 + GDD,

! BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) - scale: is a scale used to identify the phenological development
stages of a plant. A series of BBCH-scales have been developed for a range of crop species. Phenological development stages of plants are used in a
number of scientific disciplines (crop physiology, phytopathology, entomology and plant breeding) and in the agriculture industry (timing of pesticide
application, fertization, agricultural insurance). The BBCH-scale uses a decimal code system, which is divided into principal and secondary growth
stages, and is based on the cereal code system (Zadoks scale) developed by Zadoks.

10 Chapter 1. Reference guide

https://en.wikipedia.org/wiki/BBCH-scale

GPRE Documentation, Release 1.0

%
A~V \V
AW \ il \ |1
| 1 | | | | 1
11 14 16 ' I 61- 83)€
3]) i m m -
4 % 3 d 5 28 22 §
- = = ® e o~ =
o o - = == = c =
= - gl G = = i
m m E] m T lis 7]
E % 2 2§ I 4
— m O m

Fig. 1: BBCH stages for wheat.

The specific BBCH stages for a crop can now be connected to specific DVS values and the date on which this stages
occurs can be predicted using meteorological data using either historical records, a weather forecast or a climatology.

The crop stage prediction service is implemented in a python module and uses the simulation engine provided by
PCSE to make the actual computations. The service is exposed through a web interface and delivers a JSON response
containing the predicted crop growth plus alerts for crop treatments and possible weather induced stress:

More information on PCSE can be found @ http://pcse.readthedocs.io/en/stable

1.3.3 Disease monitoring service

The disease monitoring service is currently only operational for rice. It is based on the EpiRice model which defines
environmental response functions for a number of important rice disease based on temperature and relative humidity.
The disease monitoring service does not fully implement the epirice model nor does it predict the actual disease infesta-
tion on a particular location. It merely predicts the susceptibility of the crop to a particular disease given the prevailing
weather conditions.

The current implementation provides both charts of the time-course of disease susceptibility for a given location as
well as data for generating maps of disease susceptibility . Not that the maps are generated based on the environmental
response curves for the whole of Myanmar but they take no notice of the actual rice growing areas. Therefore, alerts
could be generated for areas that are not important for rice cultivation.

1.3. Service Components 11

http://pcse.readthedocs.io/en/stable
https://doi.org/10.1016/j.cropro.2011.11.009

GPRE Documentation, Release 1.0

0 Sprouting | 1Leaf Sinflorescerce | 6 Flowerng 7 Development :ewm 9 Senescence
development| emeqgence of fruit frut and seed
M 05 AN 1B 195 88 S| 61 &5 A7 75 TR RS RA| @ a3 a5 a7
| 1 111 | 1 11 L 111 l 111 l L1l | L1l | | 1
Tuber formason

Fig. 2: BBCH stages for potato.

12 Chapter 1. Reference guide

GPRE Documentation, Release 1.0

1.2
™
XN .
Toptimum 1 <0o® Toptimum 2
== [Tmin,0,Topt,1,Tmax,1] \ / " / N
1 r ‘ -
' f
= 4= [Tmin,0,Toptl,1,Topt2,1,Tmax,1] \
\
0.8 | \
]
E == [Tmin,0, Topt,1,Tmax,1]
=]
o
(7]
[
o 0.6 \
£ \
g \
04 | \
\
L \
Tminimum or Thase
\ Tmaximum
0.2
\
\
\
0 1 1 1 1 % 1
0 5 10 15 20 25 30 35 40 45 50

Daily mean air temperature [oC]

Fig. 3: Temperature response function - various forms.

1.3. Service Components 13

GPRE Documentation, Release 1.0

Disease charts

The charts for disease susceptibility are very similar to the weather monitoring. They provide insight into the course of
disease susceptibility for the current year (the period from sowing date up till today), the forecast (the next 7 days) and
the variability according to the historical archive. To show the variability, the plot includes, the minimum/maximum,
the 10th/90th percentile and the median of the historical data.

Using this approach it demonstrates that disease susceptibility has been mainly low for this season and is also expected
to be low for the coming 7 days.

Susceptibility for leaf blast at lat/lon=20.9/96.5 at the 5th of July 2020 with a sowing date of 2020-04-07

Disease maps

Similar to the weather maps, the disease monitoring service does not provide ready made maps but instead returns the
data to generate the maps. The services uses the same regions as the weather map service and provides the disease
susceptibility value for all regions in Myanmar and for the 7 days of the DarkSky forecast. Further, the services provides
a Z score that indicates how the current value relates to the historical record. The interpretation is the same as Z scores
that are computed for the weather service: 0 means equal or lower then the minimum historically reported for this
variable. 1 means equal or larger then the the maximum historically reported for this variable. Values between 0 and
1 indicate a the position within the historical distribution. The variables provided by the disease mapping service are
provided in the table below.

Variable name Explanation

F_WEATHER The disease susceptibility value for the weather conditions on this day.
F_WEATHER_SCORE The Z score for the current disease susceptibility

1.4 GPRE system and installation

1.4.1 Overview of the repository

The list below shows an overview of the directory layout of the GPRE code and a description of the content of the
different sub-directories:

L— GPRE - Root directory and various scripts for docker and.
—flask

docker_base - Scripts for creating the base docker image;

gpre - the GPRE code root directory

—— cache - cache and temporary files

— config - System configuration and settings

— db_struct - SQL scripts for building the MySQL database

— doc - Documentation for GPRE, built with Sphinx

L figures - Figures for the documentation

—— downloads - File downloads are written here

— gpre - Python code implementing GPRE services

— logs - Log files are written here

— notebooks - Notebooks, mainly for estimating GDD for..
—.phenology for different crops

|— pcse - The PCSE package that is used by the models for.

—crop stages prediction and disease
(continues on next page)

14 Chapter 1. Reference guide

GPRE Documentation, Release 1.0

(continued from previous page)

phenology - The model for simulating phenological development
tasks - Python scripts that implement scheduled tasks
webserver - Python scripts that implement the HTTP API to.

—call GPRE services

1.4.2 System configuration

The configuration of GPRE has been implemented as a python package which allow to import the whole configuration
and access the various configuration settings by typical python notation (e.g. config.database.default_user).
The configuration has been split into sections with the following structure:

config/__init__.py - Top level configuration (logging, site name, etc.)
database.py - Database credentials to access the database
disease.py - Disease related settings
simulator.py - Settings related to phenology simulation
weather.py - Settings related to weather (e.g. DarkSky API key)
webserver.py - Web server related settings (IP address under which GPRE is,.
—running)

Most of the configuration settings do not need to be touched. However if database credentials or IP addresses change
this may be required.

1.4.3 Setting up GPRE on your local desktop

Often if is useful to run the GPRE services on your local desktop in order to debug a service, develop additional services
or have a closer look at a certain output. However, every GPRE service needs to connect to the GPRE database in order
to retrieve weather data and/or crop parameters. Therefore, installing GPRE locally involves several steps:

1. Installing a python distribution and the required packages
2. Installing the Google Cloud SQL proxy to connect to the MySQL database
3. Starting GPRE through python, flask or docker

Below, we assume that GPRE will be installed on a PC running Linux (Ubuntu or similar).

Setting up a python environment

The most convenient way to setup a python environment is through the miniconda python installer. After downloading
and installing miniconda a new python environment must be created. Current GPRE still runs on a python 2.7 environ-
ment. Although python 2.7 is officially end-of-life this will not be problematic as long as the GPRE API is not directly
exposed to the internet. A new python environment can be created with the following command:

conda create -n py27_gpre python=2.7 pymysql sqlalchemy pandas numpy pyyaml flask xlwt.
—xlrd requests jupyter sphinx

When the environment has been created, it can be activated with:

(base) wit®15@d0137094:~$ conda activate py27_gpre
(py27_gpre) wit015@d0137094:~$

Some additional packages still need to be installed with the pip installer:

1.4. GPRE system and installation 15

https://docs.conda.io/en/latest/miniconda.html

GPRE Documentation, Release 1.0

(py27_gpre) wit015@d0137094:~$ pip install yattag dotmap plotly==3.6

Successfully installed dotmap-1.3.17 typing-3.7.4.1 yattag-1.13.2 plotly-3.6.0
(py27_gpre) wit015@d0137094:~$

The conda environment is now ready for use on your local PC. Note that for the operational deployment of GPRE,
installation of python and its dependencies for GPRE are taken care of by the docker image.

Connecting to the MySQL database

The MySQL database is running in the Google cloud as a managed database service. A database running within the
Google cloud cannot be access directly from outside for security reasons. Therefore special software has to be used to
make your local desktop PC connect to the GPRE database, this special software is the Google Cloud_SQL_proxy. The
cloud SQL proxy creates a secure tunnel between your local desktop and the Google Cloud project where the database
is running and forwards the requests to the database. Use of the Cloud SQL proxy is free of charge.

Installing the Cloud_SQL_proxy is simple as it is a self-contained binary, however it requires that the Google Cloud
SDK is installed and that the Google project where the database is running is registered as the default project. With
the Google SDK installed, starting the cloud proxy can be done using:

wit015@d0137094% ./cloud_sql_prox -instances=gpci-266802:us-centrall:gpre-mysql=tcp:3310
2020/07/07 12:01:16 Rlimits for file descriptors set to {&{8500 1048576}}

2020/07/07 12:01:16 Listening on 127.0.0.1:3310 for gpci-266802:us-centrall:gpre-mysql
2020/07/07 12:01:16 Ready for new connections

The cloud proxy has now connected to the google cloud and created a tunnel to the GPRE MySQL database which
listens at the localhost (127.0.0.1) at port 3310. The id string that is given after the -instances option can be taken from
the DB administration page on the Google Cloud portal.

The actual connection can now be made using any MySQL client using the proper database username/password. In
the example below we use the MySQL commandline utility:

wit0®15@d0137094% mysql -u gpre -p -h 127.0.0.1 -P 3310
Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 880049

Server version: 5.7.25-google-log (Google)

Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> use gpre;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> select * from crop;
et fom e +

(continues on next page)

16 Chapter 1. Reference guide

https://cloud.google.com/sql/docs/mysql/sql-proxy
https://cloud.google.com/sql/docs/mysql/sql-proxy
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/

GPRE Documentation, Release 1.0

(continued from previous page)

| crop_no | crop_name |

13 | Sugarcane |
14 | Mung bean |
o e ittt +
4 rows in set (0.11 sec)

mysql>

The Cloud SQL proxy will also show that a new connection has been made:

[2020/@7/07 12:05:27 New connection for "gpci-266802:us-centrall:gpre-mysql"

Similarly the connection can be made from within python using the database credentials that are set in the GPRE
configuration at config/database.py. However, it is important that the environment variable DEVELOP is set in order
to indicate to GPRE that we are running in DEVELOP mode and not in the docker image on the Google Cloud. Note
that we are adding the location where GPRE can be found to the python path which will vary depending on where you
put GPRE on your system:

(py27_gpre) wit015@d0137094:~$ export DEVELOP=1

(py27_gpre) wit015@d0137094:~$ python

Python 2.7.18 |Anaconda, Inc.| (default, Apr 23 2020, 22:42:48)
[GCC 7.3.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import sys

>>> sys.path.append("/home/wit®15/Projects/SAMM/GPRE/gpre")

>>> import config

using DEVELOP DB settings!

>>> import sqlalchemy as sa

>>> engine = sa.create_engine(config.database.dbc)

>>> DBcon = engine.connect()

>>> cursor = DBcon.execute("select * from crop")

>>> print(cursor.fetchall())

[(1, '"Maize'), (11, 'Rice'), (13, 'Sugarcane'), (14, 'Mung bean')]

We can now start to test GPRE on the local PC or run the notebooks for setting up a new crop for the crop prediction
service. Note that the Cloud SQL proxy should be running whenever we want to connect to the MySQL GPRE database.

Running GPRE locally

For running GPRE from a local python interpreter examples can found in the folder tasks/. Running the script
tasks/gpre_examples.py will produce the following output:

(plyi2 7 lgipirleD| Wiilt0150dd0 137094 : M/Pidoljleldt s}/[SAMM/[GPRE]/[dpire]/[taskis'$| plyithion g
Hotrlel/wiilt 0 1 5//[Pidoljlelct sl/|SA] PRE}/lgpiriel/tas
using DEVELOP DB settings)!
{
"managementalerts": [
{
"msg": "Weed control",

(continues on next page)

1.4. GPRE system and installation 17

GPRE Documentation, Release 1.0

"msg_id": "7",
"day": "2019-08-28"
3,
{
"msg": "Scouting for pest and disease control",
"msg_id": "12",
"day": "2019-09-04"
3,
{
"msg": "Second fertilizer application",
"msg_id": "5",
"day": "2019-09-08"
3,
{
"msg": "Weed control",
"msg_id": "8",
"day": "2019-09-07"
e
{
"msg": "Check leaf colour for nutrient deficiency",
"msg_id": "10",
"day": "2019-09-07"
e
{
"msg": "Scouting for pest and disease control",
"msg_id": "13",
"day": "2019-09-16"
e
{
"msg": "Third fertilizer application",
"msg_id": "6",
"day": "2019-10-11"
e
{
"msg": "Weed control",
"msg_id": "9",
"day": "2019-10-10"
}l
{
"msg": "Check leaf colour for nutrient deficiency",
"msg_id": "11",
"day": "2019-10-10"
e
{
"msg": "Scouting for pest and disease control",
"msg_id": "14",
"day": "2019-10-14"
B
{
"msg": "Scouting for pest and disease control",
"msg_id": "15",

"day": "2019-10-31"

(continued from previous page)

(continues on next page)

18

Chapter 1. Reference guide

GPRE Documentation, Release 1.0

e

{

"msg": "Prepare for harvest",

"msg_id": "16",

"day": "2019-12-14"

e

{

"msg": "Harvesting can begin: check weather forecast",

"msg_id" o 077 ,
"day": "2019-12-19"

}l

{

"msg": "Thresh and dry maize kernels",
"msg_id": "18",

"day": "2019-12-23"

B

{

"msg": "Arrange proper storage (sacks and warehouse).
"msg_id": "19",

"day": "2020-01-02"

}

]l
"weatheralerts": [],
"phenology": [
{
"bbch": "BBCH_ 01",
"day_current": "2018-08-15T00:00:00",
"dap_avg": 1,
"dap_current": 0,
"dap_diff": 1
e
{
"bbch": "BBCH_10",
"day_current”: "2018-08-23T00:00:00",
"dap_avg": 9,
"dap_current": 8,
"dap_diff": 1
Fg

"bbch": "BBCH_13",

"day_current": "2018-09-05T00:00:00",
"dap_avg": 21,

"dap_current": 21,

"dap_diff": 0

e

{

"bbch": "BBCH_30",

"day_current”: "2018-09-12T00:00:00",
"dap_avg": 28,

"dap_current": 28,

"dap_diff": 0

s

(continued from previous page)

Check for pests",

(continues on next page)

1.4. GPRE system and installation

19

GPRE Documentation, Release 1.0

"bbch": "BBCH_50",

"day_current": "2018-10-14T00

"dap_avg": 61,
"dap_current": 60,
"dap_diff": 1

1,

"bbch": "BBCH_60",

"day_current": "2018-10-18T00

"dap_avg": 64,
"dap_current": 64,
"dap_diff": 0

i

"bbch": "BBCH_70",

"day_current": "2018-11-02T00

"dap_avg": 78,
"dap_current": 79,
"dap_diff": -1

Fg

"bbch": "BBCH_80",

"day_current": "2018-11-26T00

"dap_avg": 98,
"dap_current": 103,
"dap_diff": -5

Fg

"bbch": "BBCH_89",

"day_current": "2018-12-23T00

"dap_avg": 127,
"dap_current": 130,
"dap_diff": -3

Lo

"bbch": "BBCH_99",

"day_current": "2018-12-29T00

"dap_avg": 132,
"dap_current": 136,
"dap_diff": -4

:00:

:00:

:00:

:00:

:00:

:00:

00",

®®n ,

00",

00",

®®n ,

®®n ,

(continued from previous page)

20

Chapter 1. Reference guide

GPRE Documentation, Release 1.0

Running GPRE using flask

The HTTP API for GPRE has been implemented using Flask. Flask is a micro-web development framework which
makes it easy to build an HTTP interface on top of python code. For debugging the web interface and the GPRE
services it is often required to start Flask and test the output of the code in your browser. For this purpose Flask has a
built-in webserver that can be used for development but should not be used for production environments.

Starting Flask to run the GPRE services must be done from the GPRE root folder using the following commands:

(py27_gpre) wit015@d0137094:~/Projects/SAMM/GPRE$ export DEVELOP=1
(py27_gpre) wit015@d0137094:~/Projects/SAMM/GPRES python gpre/webserver/flask_app.py
using DEVELOP DB settings!
* Serving Flask app "flask_app" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on

[INFO] - * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
[INFO] - * Restarting with stat

using DEVELOP DB settings!

[WARNING] - * Debugger is active!

[INFO] - * Debugger PIN: 182-242-591

This starts the flask webserver on the local host at port 5000. The GPRE services can now be reached at their HTTP
address. For example the following URL generates the weather charts for the given latitude/longitude. Note that the
charts are provided as HTML DIV strings and first have to be embedded in the proper HTML layout in order to be
visualized.:

[http ://localhost:5000/api/vl/get_weather_charts?latitude=21&longitude=97

Running GPRE using docker

Building the GPRE Docker image

As a first step for deploying GPRE on the Google infrastructure it is required to build and test the Docker image that
packages GPRE. First, Docker must be installed on the local PC. There is good documentation available for installing
Docker on Ubuntu so we will not repeat that here. Instead we assume that docker is properly installed and the docker
commands can be executed by an ordinary (non-root) user.

The first step in building the GPRE docker image is to build the base image. Within this image everything is prepared
for GPRE but it does not yet include the GPRE code. The reason for creating a base image is that creating the base
image is relatively time-consuming but only has to be done once. The actual GPRE services image will build upon the
base image and will simply add the GPRE code in order to operationalize GPRE.

The GPRE base image itself is based on a third party image which already prepares a linux operating system based
on Debian Linux ‘Buster’. It includes a python2.7 installation, the NGINX webserver and the uWSGI framework that
provides the connection between NGINX and Flask. Information about this image can be found here.

The definition of the base image is laid out in the Dockerfile in the GPRE/docker_base directory. The image can be
built using the command (note the trailing dot):

docker build -t gpre/base:v2020.05.07 .

Sending build context to Docker daemon 3.072kB
Step 1/3 : FROM tiangolo/uwsgi-nginx-flask:python2.7
---> 04d91d0c6044

(continues on next page)

1.4. GPRE system and installation 21

https://flask.palletsprojects.com/en/1.1.x/
https://docs.docker.com/engine/install/ubuntu/
https://github.com/tiangolo/uwsgi-nginx-docker

GPRE Documentation, Release 1.0

e Mozilla Firefox

File Edit View History Bookmarks Tools Help

&y Cloud SDK Command Lir X | GPRE system and installatic X [NGIEIEEANOIENTIAVGSEE -+
<« C @ @ localhost:5000/api/v1/get_weather ci »s¢ * flaskpyth > | IN @0 ©®@ B @ 5%

@ Getting Started FSgpre [l Plotly
JSON RawData Headers

Save Copy Collapse All Expand All (slow) 7 Filker J500

w inputs:

latitude: 21

longitude: 97
message: "success”
b chart WIND: “zdive==div 1d=\"90dd&6832-.\"));}) =/ script==/div="
b chart TMAX: "edive=<div id=\"be2BlfOf-.7\")):}) </ script=</div="
b chart TMIN: "ediv==div id=\"2802e314-.1\"));}):</script=</div="
b chart RAIN: ‘ediveediv id=\"c29e352a-.7\"));}) i< script=</div="
b data download: *http://127.0.0.1:5008/ap.. 2020-07-07 11018477 .x1s"
SUCCESS: true

22 Chapter 1. Reference guide

GPRE Documentation, Release 1.0

(continued from previous page)

Step 2/3 : RUN apt-get update && apt-get install -y --no-install-recommends --no-upgrade.
—python-pip python-setuptools vim.tiny && rm -rf /var/lib/apt/lists/* && rm -rf /var/
—,cache/apk/*

---> Using cache

---> faeb542ac8123
Step 3/3 : RUN pip install dotmap pymysql sqlalchemy pandas numpy pyyaml flask xlwt xlrd.
—requests yattag plotly==3.6

---> Using cache

---> 4fcda6056a8c
Successfully built 4fcda6056a8c
Successfully tagged gpre/base:v2020.05.07

The option -7 tags the docker image with a name which includes the date that the Dockerfile was defined. Subsequent
versions of the base image should get a new tag updating the date.

Building the GPRE image

Next step is to build the GPRE image. The Dockerfile for building the GPRE image is very simple. It takes the base
image, creates a folder structure and finally copies the python code required for GPRE into the image. Note that the
FROM directive in the Dockerfile should point to the latest version of the GPRE base image. The Dockerfile looks like
this:

FROM gpre/base:v2020.05.07

RUN mkdir /app/gpre /app/gpre/cache /app/gpre/config /app/gpre/downloads/ /app/gpre/gpre..
—/app/gpre/logs/ \
/app/gpre/pcse /app/gpre/phenology /app/gpre/tasks /app/gpre/webserver
COPY ./gpre/config /app/gpre/config
COPY ./gpre/gpre /app/gpre/gpre
COPY ./gpre/pcse /app/gpre/pcse
COPY ./gpre/phenology /app/gpre/phenology
COPY ./gpre/tasks /app/gpre/tasks
COPY ./gpre/webserver/flask_app.py /app/main.py

Finally the GPRE Docker image can be built (from within the GPRE top directory where the Dockerfile resides) with:

$ python -m compileall .
$ docker build -t gpre/v2020.05.13 .

When listing the available Docker images, it should now show at least the following three images:

$ docker image ls

REPOSITORY TAG o
—IMAGE ID CREATED SIZE

gpre/v2020.05.13 latest o
—a78b2bd16b53 8 minutes ago 1.29GB

gpre/base v2020.05.07 o
—4fcda6056a8c 2 months ago 1.28GB

tiangolo/uwsgi-nginx-flask python2.7 o
-.04d91d0c6044 8 months ago 910MB

Starting and testing the GPRE docker image

The GPRE docker image can now be started by Docker. This means that docker creates a container from the image
which is then started. One can start multiple containers from one image which could be useful if the GPRE service

1.4. GPRE system and installation 23

GPRE Documentation, Release 1.0

gets more requests than can be handled by one container. Starting an image is done with the docker run command:

[docker run --name=gpre_production --network="host" -d -e DEVELOP='1l"' gpre/v2020.05.13 J

Because we are still running on the local desktop some special commands have been added. The —network="host”
option indicates that the network of the container should not be isolated from the Docker host. This host networking
mode is required because the container needs to connect to the MySQL database through the SQL cloud proxy which
runs on the localhost port 3310. Further, the option -e DEVELOP="1" sets environment variable DEVELOP within the
container because we still are running in DEVELOP mode.

We can check that the container is running with:

$ docker container 1ls

CONTAINER ID IMAGE COMMAND CREATED =
—STATUS PORTS NAMES

144b7b30624b gpre/v2020.05.13 "/entrypoint.sh /sta..." 21 minutes ago e
~Up 21 minutes gpre_production

Now the GPRE service should be available on the localhost port 80. In fact, we are running the same code as with the
Flask webserver (see above) but now through the NGINX webserver inside a Docker container. This solution is much
more portable and robust than the Flask solution (which is for testing only). The GPRE services can be accessed in
your browser through the following URL:

http://localhost/api/v1/get_weather_charts?latitude=21&longitude=97
Which should give the same result as the Flask solution (see above).
Debugging Docker containers

Debugging Docker containers can be notoriously difficult. The fact that a container is isolated from the host operating
system also means that little feedback is provided on the what goes wrong when running the GPRE image. When the
GPRE service fails often the only direct feedback is a 502 Bad Gateway message displayed in your browser.

The most easy approach I found when debugging docker containers is by accessing the container through the docker
exec command. For this we first need to find the container ID:

$ docker container 1s

CONTAINER ID IMAGE COMMAND CREATED -
—STATUS PORTS NAMES

b861c364£513 gpre/v2020.05.13 "/entrypoint.sh /sta..." 4 minutes ago ar
—Up 4 minutes gpre_production

Next we can connect to the docker container by starting a bash shell inside the container with:

$ docker exec -it b861c364f513 bash
root@d®137094: /app#

The root@d0137094:/app# prompt indicates that you are now inside the container. Now the GPRE services can be
started manually with:

root@d0137094: /app# python main.py
using DEVELOP DB settings!
Traceback (most recent call last):
File "main.py", line 46, in <module>
from gpre.create_weather_graph import generate_weather_charts_for_location
File "/home/wit015/Projects/SAMM/GPRE/gpre/gpre/__init__.py", line 7, in <module>
File "/home/wit015/Projects/SAMM/GPRE/gpre/config/__init__.py", line 19, in <module>

(continues on next page)

24 Chapter 1. Reference guide

https://docs.docker.com/network/host/
https://docs.docker.com/network/host/
http://localhost/api/v1/get_weather_charts?latitude=21&longitude=97

GPRE Documentation, Release 1.0

(continued from previous page)

File "/home/wit015/Projects/SAMM/GPRE/gpre/config/simulator.py", line 9, in <module>
File "/home/wit0®15/Projects/SAMM/GPRE/gpre/phenology/__init__.py", line 1, in <module>
File "/home/wit015/Projects/SAMM/GPRE/gpre/phenology/data_providers.py", line 20, in
—<module>
File "/home/wit015/Projects/SAMM/GPRE/gpre/pcse/__init__.py", line 103, in <module>
File "/home/wit015/Projects/SAMM/GPRE/gpre/pcse/__init__.py", line 91, in setup
IOError: [Errno 2] No such file or directory: '/app/gpre/pcse/settings/default_settings.
~py'
root@d®137094: /app#

The output from the python interpreter now clearly indicates that a file is missing.

1.4.4 Deploying GPRE on the Google Cloud

First-time deployment of the container

When the Docker image can be successfully deployed on the local PC and all GPRE services are working correctly,
the next step is to deploy it to production into the Google Cloud. The first step is to build to the Docker image again,
but instead of writing it into the local Docker registry, we write it towards the Google Container Registry. With the
following commands:

$ docker build -t gcr.io/gpci-266802/gpre:v2020.05.13 .
$ docker push gcr.io/gpci-266802/gpre:v2020.05.13

The docker image is now registered and available inside the Google Container Registry. The GPRE production service
in the Google Cloud can now be started using a gcloud command. This assumes that the Google SDK is installed and
the gpci project is registered as the default project:

gcloud compute --project=gpci-266802 instances create-with-container gpre-production --
—zone=us-centrall-a \
--machine-type=gl-small --subnet=default --network-tier=PREMIUM \
--metadata=google-logging-enabled=true --service-account \
gpre-619@gpci-266802.iam.gserviceaccount.com --image-family=cos-stable \
--image-project=cos-cloud --container-image=gcr.io/gpci-266802/gpre:v2020.
—05.13 \
--container-restart-policy=always --container-privileged --tags=http-
—,server

Accessing the GPRE production service can be done either from a browser window in the google project SSH or through
a terminal on the local machine. For the latter, the SSH key must first be registered in the ssh-agent through ssh-add.
Next an SSH connection can be started using the gcloud ssh command:

$ ssh-add ~/.ssh/google_compute_engine

Enter passphrase for /home/wit®15/.ssh/google_compute_engine:

Identity added: /home/wit®15/.ssh/google_compute_engine (/home/wit®15/.ssh/google_
—,compute_engine)

$ gcloud compute ssh gpre-production

No zone specified. Using zone [us-centrall-a] for instance: [gpre-production].
RAHHHRHHHRAHHRRAAAAAHAAHA [Welcome]#AHHHRAHHARHHHAHHHRAHHHH
You have logged in to the guest OS.

To access your containers use 'docker attach' command
(continues on next page)

1.4. GPRE system and installation 25

https://cloud.google.com/container-registry/
https://cloud.google.com/compute/docs/instances/connecting-to-instance

GPRE Documentation, Release 1.0

(continued from previous page)

RASHHH R R AR AR AR R RS AR AR AR AR

wit®15@gpre-production ~ $

You are now logged on the container host (the server that hosts the container and is running it through docker). The
actual container can be accessed again through a docker attach command using the container ID:

wit®1l5@gpre-production ~ $ docker container 1s

CONTAINER ID IMAGE =
—COMMAND CREATED STATUS PORTS r
—NAMES

4ef2e216e157 gcr.io/gpci-266802/gpre

—'"/entrypoint.sh /sta..." 2 months ago Up 2 months o
—klt-gpre-production-xeif

1c75589£d329 gcr.io/stackdriver-agents/stackdriver-logging-agent:0.2-1.5.33-1-1

" /entrypoint.sh /usr..." 2 months ago Up 2 months -

—»stackdriver-logging-agent

wit®l5@gpre-production ~ $ docker exec -it 4ef2e216el57 bash
root@gpre-production: /app# 1ls

gpre main.py main.pyc prestart.sh wuwsgi.ini
root@gpre-production: /app#

The output from the Is command inside the container shows the main.py file which is the entrypoint for the GPRE
services to run.

Updating the container

When updates to the GPRE service become available it also becomes necessary to update the container running on
the container host. This is most easily done from the Google Cloud project interface. First go the Container Registry
interface and copy the full container name from the container that you want to deploy. Next go the Compute Engine
section, select the VM Instance and choose Edit. Next to go the Container image and replace the container image with
the the container name you copied from the registry. After saving the changes, the VM instance will be rebooted in
order to start the new container. See screenshots below for information.

1.5 GPRE database

1.5.1 Overview of schemas

The GPRE database consists of two schemas:
* The gpre schema which contains all data required to run the GPRE services

* the gpre_staging schema which contains copies or links to the data in the gpre schema and can be used to the
test and experiment with new services, crops or varietes.

When setting the environment variable DEVELOP=1 GPRE will always connect to the gpre_staging schema. See also
the section on System and Installation. Otherwise the gpre schema will be used.

Most of the objects in the gpre_staging schema are views to the gpre schema in order to avoid data duplication.
However, in order to add and test new crops the following objects are defined as tables with the same structure as the
tables in the gpre schema:

* crop

26 Chapter 1. Reference guide

GPRE Documentation, Release 1.0

File Edit View History Bookmarks Tools Help

(¢%) Google Cloud Platform b +

&« c @ © & httpsi//console.cloud.google.com/ger/images/gpci-26680 »+ o O\‘Search

Google Cloud Platform 8 GPCl + Q@ Search products and resources

[-'.] Container Registry & Images C REFRESH
B Images gpre
Settings ger.io / gpei-266802 / gpre I

= Filtert Columns ~
Name Tags Created Uploaded ~
u d63dddba36s4 v2020.05.13 5 days ago 5 days ago
[o13e88244c48 - May 13,2020 May13,2020 %
ﬂ fF173127528F v2020.05.07 May 7, 2020 May 7, 2020 :
[dsebrabsaafr v2020.04.22 Apr22,2020 Apr22, 2020 :
[23f1deds3sas - Apr22,2020 Apr22,2020 H
ﬂ 0e95c49709b v2020.04.07 Apr7,2020 Apr7,2020 :
ﬂ 967 7e9d581f v2020.04.02 Apr 2,2020 Apr 2,2020 :
u b44b1fad5ed? v2020.03.19 Mar 19, 2020 Mar 20, 2020

W Marketplace

<l

Fig. 4: Copying a container name from the container registry.

1.5. GPRE database 27

GPRE Documentation, Release 1.0

File

&«

D B

[

%o

<l

Edit View

Compute Engine - GPCl - Gooc X

c @ © & htips;//console.cloud.google.com/compute/instancesDe

Google Cloud Platform

Compute Engine

VM instances
Instance groups
Instance templates
Sole-tenant nodes
Machine images
Disks

Snapshots

Images

TPUs

Migrate for Compute Engi...

Committed use discounts

Metadata

Health checks

Marketplace

History Bookmarks T Help

ses % | Q search

2 GPCl + Q, Search products and resources

<« VMinstance details EDIT RESET

MIar 2U, ZUZU, 11011227 AM

Network interfaces

nic0: default default Ve

Firewalls
~ Allow HTTP traffic
Allow HTTPS traffic
Network tags
http-server €3 nginx £

Deletion protection

Enable deletion protection
When deletion protection is enabled, instance cannot be deleted. Learn more

Container image
ger.io/gpei-266802/gpre@sha256:913e88244c48e8fa38a4a35al7ed25e326dbe

Restart policy

Always -
~ Run as privileged
Allocate a buffer for STDIN

Allocate a pseudo-TTY

Command

N)

Fig. 5: Replacing a container in a Google VM Instance.

28

Chapter 1. Reference guide

GPRE Documentation, Release 1.0

* crop_parameter_value

* varieties

* variety_parameter_value

® management_alerts

o weather_alerts

1.5.2 Overview of all objects

The following table provides an overview of all objects in the gpre schema. Object types are provided as table 7, view
V" or procedure P. Note that some tables are currently not used or have been replaced by views. Those tables have been
kept in the database scheme as they may become relevant in the future.

Name Type Description

crop T Stores unique crop ID and name

crop_parameter_value T Stores crop parameter values for BBCH phenology model

date_manipulation T Auxiliary table for operations involving dates (e.g. group-by)

disease_map_cache T Stores the disease map data at regional level for Myanmar

era_grid T The grid definition of the ERA-INTERIM historical weather archive

grid T The 0.1 degree grid definition for Myanmar

grid_005 T An alternative 0.05 degree grid definition for Myanmar not used

grid_weather_forecast T Table for storing the weather forecast not used (DarkSky API is now used)

grid_weather_forecast_d0 T Table for storing the first day of the weather forecast not used

grid_weather_lta v View for providing the long-term-average historical weather data

grid_weather_Ita_tbl T Table for providing the long-term-average historical weather data not
used

grid_weather_observed v View for providing the actual historical weather data

grid_weather_observed_tbl T Table for providing the actual historical weather data not used

management_alerts T Table for providing management alerts linked to BBCH stages

regions T Table for providing information regions in Myanmar

season T Stores the season definitions

varieties T Stores unique variety ID and variety name for each crop

variety_parameter_value T Stores parameters for BBCH model specific for a variety

weather_alerts T Stores weather alerts linked to a BBCH phenological stage

weather_hres_grid_myanmar T Stores historical weather data from the ERA-INTERIM archive

weather_hres_grid_myanmar_Ita T Stores long-term-average weather derived from the ERA-INTERIM
archive

weather_map_cache T Stores the weather forecast for each region derived from DarkSky

get_grid P Returns grid ID for given latitude, longitude and cellsize

get_grid_weather P Returns actual weather data for given grid ID and year range

1.5. GPRE database

29

GPRE Documentation, Release 1.0

1.5.3 Base tables
The base tables in the database define properties that are used in nearly all other tables and views and are used to

define relationships. The primary keys in those tables could function as foreign keys in the other tables although this
is currently not enforced in the database.

Crop table

Stores the unique crop_no together with a crop_name.

Field Type Null Key Default Extra
Crop_no int(11) NO PRI NULL
crop_name varchar(40) YES NULL

Varieties table

Stores the unique crop_no, variety_no together with a variety_name.

Field Type Null Key Default Extra
Crop_no int(11) NO PRI NULL
variety_no int(11) NO PRI NULL
variety_name varchar(40) YES NULL

Seasons table

Stores the identifiers for the different cropping seasons. Management alerts can be different for different cropping
seasons and therefore it can be useful to descriminate between seasons.

Field Type Null Key Description

season_no int(11) NO PRI Unique season ID
season_name varchar(40) YES Name of the cropping season
season_definition varchar(60) YES Description of the season

Regions table

Stores unique code of the lowest level administrative regions (GID_3) including the latitude/longitude of each region
and the administrative regions to which it belongs.

30 Chapter 1. Reference guide

GPRE Documentation, Release 1.0

Field Type Null Key Default Extra
GID_0 char(3) NO NULL
NAME_0 varchar(50) NO NULL
GID_1 varchar(10) NO NULL
NAME_1 varchar(50) NO NULL
GID_2 varchar(20) NO NULL
NAME_2 varchar(50) NO NULL
GID_3 varchar(20) NO PRI NULL
NAME_3 varchar(50) NO NULL
TYPE_3 varchar(50) NO NULL
longitude decimal(8,3) NO NULL
latitude decimal(8,3) NO NULL

grid table

Stores the unique grid_no for the grid definition in Myanmar. Moreover it provides the latitude and longitude of the
grid centroids, the average elevation of the grid terrain (over land), and whether the grid contains land (has_land =
1). The additional column idgrid_cgms14glo provides the ID of the nearest grid in the era_grid table. The latter
is required to build the link between the GPRE grid definition and the global ERA-INTERIM grid definition.

The tables grid_005 has the same structure as the grid table. The structure of the table grid_era5 is also similar.

Field Type Null Key Default Extra
grid_no int(11) NO PRI NULL
latitude float NO NULL
longitude float NO MUL NULL
elevation float YES NULL
has_land int(11) NO NULL
idgrid_cgmsl4glo int(11) NO NULL

1.5.4 Weather tables

Currently, only the historical weather data and its climatology is stored in the GPRE database because the weather
forecast is directly derived from the DarkSky API. The historical data is derived from the ERA-INTERIM archive
that is available at Wageningen Environmental Research (WEnR). Data from the WEnR data is transferred each day
for the Myanmar window. The tables are replicated from the WEnR database and therefore have a slightly different
structure compared to the other weather tables. The mapping between the WEnR structure and the GPRE structure is
accomplished through the views grid_weather_observed and grid_weather_lta.

The weather tables that store the ERA-INTERIM weather archive (weather_hres_grid_myanmar) and its climatol-
ogy (weather_hres_grid_myanmar_lta) have the following structure.

1.5. GPRE database 31

GPRE Documentation, Release 1.0

Field Type Null Key Description and units

idgrid int(11) NO PRI Unique grid ID

day date NO PRI date or day number

temperature_max decimal(3,1) NO degrees Celsius

temperature_min decimal(3,1) NO degrees Celsius

temperature_avg decimal(3,1) NO degrees Celsius

vapourpressure decimal(4,2) NO vapour pressure hPa

windspeed decimal(5,1) NO wind speed m/sec at 10m

precipitation decimal(4,1) NO precipitation in mm/day

e0 decimal(4,2) NO open water reference evaporation in mm/day
es0 decimal(4,2) NO soil reference evaporation in mm/day

et0 decimal(4,2) NO crop reference evapotranspiration in mm/day
radiation decimal(6,0) NO Incoming global radiation in kJ/m2/day
snowdepth decimal(6,2) YES Snow depth in cm

The weather tables and views whose name starts with “grid_weather” have a structure that is similar to the table below.

Field Type Null Key Description and units

grid_no int(11) NO PRI grid identifier

day date NO PRI date or day number (in case of LTA
maximum_temperature decimal(10,5) NO degrees Celsius

minimum_temperature decimal(10,5) NO degrees Celsius

vapour_pressure decimal(10,5) NO vapour pressure hPa

windspeed decimal(10,5) NO wind speed m/sec at 10m

rainfall decimal(10,5) NO precipitation in mm/day

e0 decimal(10,5) NO open water reference evaporation in mm/day
esO decimal(10,5) NO soil reference evaporation in mm/day

et0 decimal(10,5) NO crop reference evapotranspiration in mm/day
calculated_radiation decimal(10,5) NO Incoming global radiation in kJ/m2/day
snow_depth decimal(10,5) YES Snow depth in cm

1.5.5 Crop parameters and alerts

Tables for phenology parameters

There are two tables for storing crop phenological parameters, these are named crop_parameter_value and
variety_parameter_value. The parameter values for a specific variety take precedence over the parameter for
the crop. In practices this means that temperature response functions for phenology are often specified per crop, while
the number of degree-days for reaching a phenology stage are described for each variety specifically. Both tables have
a structure similar to the one below.

Field Type Null Key Description

Crop_no int(11) NO PRI The crop number
parameter_code varchar(20) NO PRI the parameter name
parameter_value varchar(255) YES the parameter value
parameter_description varchar(255) YES the description of the parameter

32

Chapter 1. Reference guide

GPRE Documentation, Release 1.0

Tables for messages and alerts

The system contains two tables for storing messages and alerts. Management messages are stored in the table
management_alerts which provides the crop management messages linked to a particular crop BBCH stage, see

table below.

Field Type Null Key Description

Crop_no variety_no int(11) int(11) NO NO PRI crop ID variety ID season ID message ID
season_no message_no int(11) int(11) NO NO PRI BBCH code to which the message corresponds

BBCH_code offset_days varchar(45) YES PRI days before (-) or after (+) reaching the BBCH
management_msg int(11) longtext ~ YES PRI stage The message itself
YES

Weather alerts are signalled when (a combination of) adverse weather conditions occur that are important for a farmer
to take action on. Such weather alerts can for example be defined as the probably of fog occurrence on three consecutive
days, which would increase the changes of development of late blight in potato. The definition of the weather alerts is
done in the table weather_alerts (see below). The parameters required for such an alert can be highly crop specific
and therefore the parameters are stored in the table as a JSON string which is parsed by the system.

Field Type Null Key Description

Crop_no int(11) NO PRI cropID

variety_no int(11) NO PRI variety ID

season_no int(11) NO PRI season ID

message_no int(11) NO PRI message ID

parameters varchar(255) YES parameters for weather alert as JSON string

weather_msg longtext YES the weather alert message

signal varchar(255) YES the signal to be broadcasted, see the pcse.signals module

1.5.6 Caching tables

Caching tables are used to stored pre-computed results which would otherwise take to long provide to the user.
The system contains two caching tables, one for weather maps weather_map_cache and one for disease maps
disease_map_cache. The tables just store the computed results as JSON for a given day (and disease). The HTTP
API is simply returning the data for the current day from the relevant table.

1.5. GPRE database 33

GPRE Documentation, Release 1.0

34 Chapter 1. Reference guide

CHAPTER
TWO

CODE DOCUMENTATION

2.1 GPRE code documentation

This section provides an overview of all code documentation that is part of GPRE. This part of the documentation is
mostly generated from the documentation headers in the source code. Further, it can be used to quickly navigate the
source code as each documented function or class is linked to the relevant code section using the [source] link.

2.1.1 GPRE service implementation

Code for all specific GPRE services is described here

Weather service

Crop stage prediction service
Disease service

2.1.2 Webserver scripts

All webserver scripts are thin wrappers around GPRE scripts that perform the actual processing. All webserver scripts
use Flask through a WSGI interface for exposing the HTTP URL.

2.1.3 Simulator for phenology, management alerts and weather alerts
Simulation of crop phenology

Simulation of management alerts simulator

Simulation of weather alerts simulator

Data providers

35

GPRE Documentation, Release 1.0

36 Chapter 2. Code documentation

CHAPTER
THREE

INDICES AND TABLES

* genindex
* modindex

¢ search

37

	Reference guide
	GPRE overview
	Service components
	Technical components

	Data sources
	Weather
	DarkSky API
	ECMWF ERA-INTERIM
	Combining weather data sources

	Phenology modelling
	Disease modelling

	Service Components
	Weather Monitoring service
	Weather charts
	Weather maps

	Crop stage prediction service
	BBCH
	Plant response

	Disease monitoring service
	Disease charts
	Disease maps

	GPRE system and installation
	Overview of the repository
	System configuration
	Setting up GPRE on your local desktop
	Setting up a python environment
	Connecting to the MySQL database
	Running GPRE locally
	Running GPRE using flask
	Running GPRE using docker

	Deploying GPRE on the Google Cloud
	First-time deployment of the container
	Updating the container

	GPRE database
	Overview of schemas
	Overview of all objects
	Base tables
	Crop table
	Varieties table
	Seasons table
	Regions table
	grid table

	Weather tables
	Crop parameters and alerts
	Tables for phenology parameters
	Tables for messages and alerts

	Caching tables

	Code documentation
	GPRE code documentation
	GPRE service implementation
	Weather service
	Crop stage prediction service
	Disease service

	Webserver scripts
	Simulator for phenology, management alerts and weather alerts
	Simulation of crop phenology
	Simulation of management alerts simulator
	Simulation of weather alerts simulator
	Data providers

	Indices and tables

